
Operated by Los Alamos National Security, LLC for NNSA

LA-UR-12-21173	

Slide 1

How	 can	 applica+on	 developers	 respond	
to	 advanced	 architectures?	

Timothy	 Kelley	

Applied	 Computer	 Science	 Group	 (CCS-‐7)/LANL	 	

Salishan	 2012	 	

Los Alamos National Laboratory:CCS-7:Applied Computer Science Slide 2

Many worthy efforts are underway to address the
challenges ahead for scientific simulation…

  How do we build and run an exascale machine?

  What chips will we run on?

  What interconnect?

  How will the OS stack change?

  How will we think of data persistence?

  What programming languages? APIs? models?

  How do we evolve software?

  ... and many more!

Los Alamos National Laboratory:CCS-7:Applied Computer Science Slide 3

Social challenges are important, too

  Who will program this system?
•  Better yet, who will debug it?

•  And how do we build this programmer?

•  What about as we move away from the heart of HPC?

Los Alamos National Laboratory:CCS-7:Applied Computer Science Slide 4

Learning about where we need to go as scientific
simulation programmers

  Rewriting, re-thinking Implicit Monte Carlo transport for
Roadrunner

  The advanced architecture tutorial project

  SWIFT

  Language as a means to develop developers

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Implicit Monte Carlo simulates thermal X-ray transport
for time-dependent, nonlinear problems

  Fleck & Cummings time
discretization

  object-oriented, generic C++:
•  templated on mesh type,

freq type, particle type

  transports particles 3D,
meshes articulated in 1,2,3D

  multigroup frequency
treatment

  supports AMR

  two distributed parallel
modes: mesh replicated,
decomposed

  Wedgehog: Fortran callable
interface library

 Milagro  Wedgehog

 ClubIMC

 draco

 vendor libs

Los Alamos National Laboratory:CCS-7:Applied Computer Science

An app programmer’s view of Roadrunner hybrid node:
one Opteron + one Cell

 4 GB RAM Opteron network, IO

PPE 4 GB RAM

 Cell SPE

 Element Interconnect Bus

DACS

 SPE SPE SPE

 SPE SPE SPE SPE

SPE: “Synergistic
Processing Element”

Los Alamos National Laboratory:CCS-7:Applied Computer Science

IMC on Roadrunner timeline, 2006-11

  Summer, 2006: multiple efforts undertaken to port codes
to possible Roadrunner architectures.

  2006-7: Two efforts (Henning, Kelley) to port Implicit
Monte Carlo transport to Roadrunner.
•  Top-down: free reign with data structures, algorithms.

•  Bottom-up: migrate from existing code base.

•  Both approaches showed similar speedups after 8-9 months
work; bottom-up approach chosen.

  2008-9: Additional IMC physics ported, one major sync
with trunk. Much help from IMC code team! (Urbatsch,
Hungerford, Rockefeller)

  2010-11: RR branch merged with trunk, IMC team takes
control.

Slide 7

Los Alamos National Laboratory:CCS-7:Applied Computer Science

We were successful on the IMC/Roadrunner project.

  Working, accelerated code

  Changed the MC transport algorithm
•  hierarchical concurrency

•  model expressed as set of C++ classes

•  model can be implemented for multiple machine architectures

  Decoupled particle generation from particle transport

  Introduced streams between particle generator, particle
transporter, and particle disposer
•  streams enable physical decoupling

  See [1] for much more detail

Slide 8

Los Alamos National Laboratory:CCS-7:Applied Computer Science

We learned some interesting things.

  Advanced architectures create project management problems
•  the Roadrunner code was a major redesign & rewrite

—  introduced/rewrote ~10 kloc++

•  code was forked for several years (now merged!)

  Architecture-specific coding wasn’t the hard part

  Code not properly vectorized (ongoing)

  Tally strategy worked for ~10 threads (ongoing)
•  …probably won’t scale to 100+

  Debugging was painful
•  We found...gaps...between the machine and C

IMC was one of many efforts. Detailed presentations at

http://www.lanl.gov/roadrunner/rrseminars.shtml

Slide 9

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Roadrunner is the foundation of our efforts to
use advanced architectures

  Formed Applied Computer Science Group (CCS-7)
•  Unite application developers, computer scientists

•  Build on Roadrunner experience to continue moving forward

  Roadrunner technical seminar series (2008) [1]

  Roadrunner programming classes (2008-10)

  OpenCL programming classes (2011-2)

  XCP-CCS advanced architectures tutorial project (2011-2)

  The SWIFT project (2012->2015)

Slide 10

Los Alamos National Laboratory:CCS-7:Applied Computer Science

We tried a new idea: ‘the advanced architecture tutorial’

  First iteration, FY 11; second iteration, FY 12

  Six participants from XCP & CCS divisions

  Format:
•  small (mini-app) code project.

•  sustained involvement—1/4 time for one year

  Goals:
•  communicate ideas about abstraction; improve software

engineering skills; learn to program advanced architectures.

  Some lessons learned:
•  C++ is hard to learn, harder to use well

•  programming advanced architectures is not the hard part

•  the hard part is developing the model of the computation

  Rolled those lessons into the 2012 iteration (Lally)

Slide 11

Los Alamos National Laboratory:CCS-7:Applied Computer Science

SWIFT

  New multiphysics code project (started 2012)

  Goals:
•  Develop more flexible approach to writing codes;

•  Incorporate newer programming techniques;

•  reduce time, cost to develop codes.

  50-50 mix of Roadrunner veterans and physics experts
•  including people from the advanced architecture tutorial

  Two week iterations; collocated; pair programming; …

Slide 12

Los Alamos National Laboratory:CCS-7:Applied Computer Science

SWIFT: still early, but we’re seeing encouraging signs.

  Data-centric view of multiphysics code
•  “You’ll develop a database, whether you intend to or not.”

  Grappling with C++, OOP, generic programming
•  what’s the right mix?

  Experimenting with different code approaches

  STL/Thrust-style loops versus traditional loops
•  reified loops promising for portability (cf. [2])

•  need to be sure they can be optimized

  Thinking of how data & algorithms will decompose
•  for parallelism

•  for resilience

Slide 13

Los Alamos National Laboratory:CCS-7:Applied Computer Science

The fundamentals still apply.

  Develop a mental model of the computation before coding.

  Write to a model of the computation, not to a machine.
•  ahem, OpenCL

•  re-implement the model for different architectures

  Communicate the model to the maintainer

  Architecture breaks iteration
•  different vector sizes, memory characteristics...

•  reify iteration!

  Beware of shared mutable state (e.g. IMC tallies)
•  shared concurrently between threads

•  shared sequentially between functions/modules/packages

  Restrict context of code
•  greater composability, modularity

Slide 14

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Domain scientists are not trained in the fundamentals of
computing

  Typical training: Fortran book, mentor’s code

  Advanced training: C++ book, mentor’s code

  Mental horizon restricted to code artifacts
•  namely: doubles, ints, arrays, loops

  Computation appears to be a purely phenomenological
undertaking

“Computer science is no more about computers

than astronomy is about telescopes”

Slide 15

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Languages give us great leverage on how we think

  Languages and programming methods exert enormous
influence on our thinking

  Scientific simulation has a de facto language monoculture

Slide 16

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Languages give us great leverage to improve

  Languages and programming methods exert enormous
influence on our thinking

  Scientific simulation has a de facto language monoculture

Slide 17

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Languages give us great leverage to improve

  Languages and programming methods exert enormous
influence on our thinking

  Scientific simulation has a de facto language monoculture

  We want languages/methods that encourage:
•  forming a clear model of the computation

•  expressing the model in the code

•  demonstrating correctness before running (less debugging)

—  testing shows lack of failure detection, not correctness

•  careful control of state mutation

•  reification of control flow

•  reusability & composability

  NB Not trying to find THE language

Slide 18

Los Alamos National Laboratory:CCS-7:Applied Computer Science

What about Object Oriented Programming?

  May be a good place to end up, but it’s hard to get there
•  OOP suffers from (at least) poor presentation

•  Emphasizes metaphor over math

  OOP is “close to home”
•  easy to bring bad habits along

  OTOH:
•  thinking in design patterns a step up

  Distinguish C++ from OOP

Best OOP advice ever:

  “Model the computation, not the domain.” [3]
•  typical presentation other way around

Slide 19

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Maybe we need to look farther afield...

Slide 20

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Suggestion: try Haskell
(or any functional programming language)

  Many FP languages today—not just LISP
•  ML, OCaml, Haskell; Erlang; JVM: Scala, Clojure; .Net: F#

  FP emphasizes thinking in expressions, not machines

  Type systems are a great tool for expressing abstractions

  FP culture puts high premium on correctness

  FP compilers are getting good at performance
•  fast, declarative stencil codes in Haskell [5]

•  SIMD support now going into Glasgow Haskell Compiler [6]

•  our own evaluation confirms this [8]

  FP is hard
•  because you’re learning something new

•  some ideas introduced too soon

Slide 21

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Summary

  Programming advanced architectures is quite plausible

  Roadrunner is the foundation on which we’ve built our
advanced architectures efforts

  We’re putting that experience to work in projects like
SWIFT

  Haskell will change how you think about programming.

  Hope we’ll see more experimentation with languages/
methods. Chapel? Go? D? Scala?

Thank you

Slide 22

Los Alamos National Laboratory:CCS-7:Applied Computer Science

references
[1] Roadrunner seminar series: http://www.lanl.gov/roadrunner/rrseminars.shtml

[2] Li-ta Lo et al, “PISTON: A Portable Cross-Platform Framework for

Data-Parallel Visualization Operators” http://viz.lanl.gov/projects/PISTONPaper.pdf

[3] Robert Webster, private comm.

[4] An interesting perspective on Haskell: “Escape from the Ivory Tower”

http://yow.eventer.com/events/1004/talks/1054

[5] Lippmeier et al. “Efficient parallel stencil convolution in Haskell”, http://
www.cse.unsw.edu.au/~benl/papers/stencil/stencil-icfp2011-sub.pdf

[6] SIMD support in Glasgow Haskell Compiler: http://ghc-simd.blogspot.com/

[7] Using QuickCheck in the automotive industry:

http://cufp.org/videos/model-based-testing-autosar-automotive-components

[8] https://github.com/losalamos/McPhD

Slide 23

Los Alamos National Laboratory:CCS-7:Applied Computer Science

additional slides

Slide 24

Los Alamos National Laboratory:CCS-7:Applied Computer Science

McPhD: initial effort to evaluate FP for simulations

  McPhD: neutrino Monte Carlo transport [8]
•  1D, spherical, analytic cross sections

  Clear separation in code between event generation
(particle tracking) and event consumption (tallying)
•  compiles to tightly coupled loop

•  key insight for moving MC to GPU, vectorization

  Example of reified iteration
•  simple approach to SMP parallelism

  Good performance: matches a C++ analogue

  No show stoppers as far as we’ve gone

  Still much to learn

Slide 25

Los Alamos National Laboratory:CCS-7:Applied Computer Science

What about functional programming?

Take Haskell (it’s one limit) [4]

  Equational definition of functions => simpler reasoning

  Pure functions: no (shared) mutable state!

  Side effects only where allowed

  Composability: build from small, correct pieces

  QuickCheck: sophisticated testing [7]

  Type system: lightweight formal methods
•  prove, then check

Slide 26

Los Alamos National Laboratory:CCS-7:Applied Computer Science

Would domain scientists learn FP?

  Definitely not all, probably not most
•  enough to influence the culture?

  Consider that programming, like physics, mixes
mathematical and empirical aspects.
•  Of course the mixes are different

•  but the same elements should prove appealing to some

•  FP exposes that mathematical side of programming

Slide 27

